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Abstract
This work demonstrates a writing assistant system
that provides high level advices for Chinese scien-
tific writing. Cross-lingual approaches are inves-
tigated to analyze the information structure of a
given Chinese abstract and retrieve useful knowl-
edge in the related work written in both English
and Chinese. To the best of our knowledge, this
is the first study on Chinese information structure
identification. Without the need of labeled Chinese
data, our novel model is capable of dealing with
Chinese instances by acquiring language-invariant
knowledge from the labeled English data. Adver-
sarial learning is employed to enhance the cross-
lingual sentence representation.

1 Introduction
This work presents CISA, a system for Chinese scientific
writing advising based on information structure analysis. We
extend the scope of our prior system [Huang and Chen,
2017], which addresses English writing advising, to the sec-
ond largest language in the world. In recent years, a variety
of Chinese writing assistant models have been proposed for
grammatical error detection and correction [Lee et al., 2016;
Shiue et al., 2017]. Beyond the word level and the syntax
level, our system focuses on providing the writing advice at
the discourse level and the knowledge level.

The core of CISA is a neural network for information struc-
ture identification. Once a user submits a scientific article, the
function of each sentence will be recognized into five types,
including Background, Purpose, Method, Results, and Con-
clusion. Based on the analysis of writing structure and orga-
nization, our system makes writing suggestions and retrieves
the related information from a knowledge base (KB). Previ-
ous work on information structure identification, or argumen-
tative zoning, has been shown effective in document summa-
rization [Contractor et al., 2012], citation indexing [Teufel,
2006], and literature review [Guo et al., 2014]. However,
most of them are limited to English. To the best of our knowl-
edge, there is still no study on Chinese information structure
identification, and the corpus has also yet to construct.

Due to the lack of training data, we propose a cross-lingual
adversarial network that is trained on the labeled English data

and is capable of dealing with Chinese instances. Cross-
lingual transfer learning with deep neural network has been
shown effective in sentiment analysis [Chen et al., 2016],
POS tagging [Kim et al., 2017], and question-answering [Joty
et al., 2017]. In our model, cross-lingual information includ-
ing the Universal POS tags1 and the bilingual word embed-
ding [Gouws et al., 2015; Vulić and Moens, 2015] are used
to represent the sentences, and the sentence representation is
further enhanced by using language-adversarial training.

The contributions of this work are three-fold. (1) This work
shows the first study on Chinese information structure iden-
tification and demonstrates its application for Chinese writ-
ing assistant. (2) We propose a novel method that achieves a
promising performance without the need of the labeled Chi-
nese data. (3) Our system provides related knowledge for a
submitted article with cross-lingual knowledge retrieval. The
demonstration system is available online.2

2 Method
Figure 1 shows an overview of our model for information
structure identification with cross-lingual adversarial learn-
ing. The main task is to classify a sentence into one of five
types of information structure. The adversarial learning task
is to discriminate the language of a sentence. As denoted in
Figure 1, the layers in gray are shared between the main net-
work and the discriminator. Our goal is to train a language-
neutral sentence representation and force the main network to
learn without depending on language-specific information.

The input layer of the sentence representation is the word
embeddings initialized with pre-trained bilingual word vec-
tors. We do not update the word embedding layer during
training because its cross-lingual capability will be violated
when only English data are seen. The sentence representa-
tion is encoded by a GRU [Cho et al., 2014] layer.

In addition to the word sequence, the sequence of POS
tags, and location features such as the position of the sentence
in the abstract are taken into account. Both the Chinese and
the English POS tags are converted to the Universal POS tags
for the cross-lingual purpose. Note that language-specific
features such as bag of words are excluded although some
of them have been shown useful in the monolingual task.

1http://universaldependencies.org/u/pos/
2http://nlg18.csie.ntu.edu.tw/cisa



Figure 1: Overview of our model.

Type English Chinese
Background 471 250
Purpose 590 114
Method 1,117 227
Results 1,031 120
Conclusion 185 25

Table 1: The training (English) and the test (Chinese) data.

3 Evaluation
For evaluation, we manually annotate 100 Chinese abstracts
in the EECS domain as the ground-truth. NTHU Academic
Writing Database,3 which consists of 597 labeled English ab-
stracts in the EECS domain, is adopted as the training data.
The statistics of both datasets are given in Table 1. From UM-
Corpus, a large-scale English-Chinese parallel corpus [Tian et
al., 2014], we select 30,000 English and Chinese sentences in
the Thesis domain for training the language discriminator.

As shown in Table 2, we evaluate our method in different
settings. The main network for information structure identifi-
cation is denoted as MAIN, the main network that is co-trained
with the language discriminator is denoted as MAIN+ADV,
and SEQ denotes that sequence modeling on the top of the
model is employed to maximize the probability of the whole
abstract. The Viterbi algorithm is performed to find the most
likely sequence. En/En and Ch/Ch denote the monolingual
performances by 10-fold cross-validation on the English and
the Chinese datasets, respectively. En/Ch denotes the cross-
lingual performances, where the model is trained on the En-
glish data and tested on the Chinese data.

The cross-lingual MAIN model achieves an F-score of
58.17%, which is slightly superior to that of its monolingual
counterpart trained on the small Chinese dataset. This result
shows that the basic model, which regards the information
from bilingual word embeddings and the Universal POS tags,
is capable of cross-lingual generalization. Sequential model-
ing is useful for both monolingual and cross-lingual models.

3http://writcent.nthu.edu.tw/writcent/

Model En/En Ch/Ch En/Ch
MAIN 65.60% 57.06% 58.17%
MAIN+SEQ 71.58% 62.09% 66.10%
MAIN+ADV N/A N/A 63.88%
MAIN+ADV+SEQ N/A N/A 71.93%

Table 2: Performances of our method in different settings. Marco-
average F-scores are reported.

The language-adversarial learning strategy further im-
proves the performances of the MAIN and MAIN+SEQ mod-
els. In other words, co-training with a language discrimi-
nator successfully reduces the performance gap between the
source and the target languages. The adversarial model with
sequence labeling achieves a promising F-score of 71.93%,
making a significantly improvement over all other models for
the target language (p < 0.01).

4 Cross-lingual Knowledge Retrieval
We construct a KB with the results extracted by information
structure identification. For each sentence in a collection of
EECS abstracts written in both English and Chinese, we la-
bel its information structure type and insert it into the KB as a
node. The relation between a node pair in the KB is denoted
by the tuple of their types. For example, 〈Purpose,Method〉
denotes a relation between nodes a and b, where b is the
method for the research goal a.

For an abstract submitted to CISA, each sentence will be
labeled with its information structure type and linked to the
related nodes with the same type in the KB. Various types of
knowledge stored in the KB will be retrieved by using graph
traversal. Finally, CISA will list the feasible approaches to
user’s research goal, the potential applications of the pro-
posed method, and so on.

For the linking of cross-lingual information, the sentences
in both English and Chinese are represented by using the
bilingual word embeddings. Once all the nodes in the KB and
the sentences in the submitted abstract are encoded as vectors
in the same space, their relatedness can be computed by using
cosine similarity. An evaluation on 100 abstracts shows our
sentence representation achieves an MRR of 0.70 in cross-
lingual sentence retrieval. In the future, the analysis of the
semantic relation at the entity level [Gábor et al., 2018] will
be integrated into CISA for fine-grained knowledge retrieval.

5 Conclusion
This work presents CISA, the first system for Chinese infor-
mation structure analysis. We propose a model for Chinese
information structure identification without the need of la-
beled Chinese data. The multi-label, finer-grained informa-
tion structure analysis will be explored in the future.
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